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This paper presents a simulation study of a generalized Cox approach
for modeling credit risk in the context of a firm exposed to extrem COs
emissions. The study uses a Poisson process to model the random events
associated with such excessive CO2 emissions, and a shot noise process to
capture the impact of these emissions exceedances exceedances on the firm’s
hazard process. The simulations show the effectiveness of the generalized
Cox approach in capturing the impact of extrem CO2 emissions exceedances
on credit risk, and the sensitivity of the results to changes in the model
parameters.
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1 Introduction

The current issue at hand focusses on the impact of emissions exceedances on a com-
pany’s credit risk, which is particularly relevant in the context of the Emissions Trad-
ing System (ETS). The ETS, as a market-based mechanism, plays a significant role in
addressing emissions and can have implications for a company’s financial stability, reg-
ulatory compliance, and reputation. Under the ETS, companies are allocated emission
allowances, which represent the authorization to produce or emit a specific quantity
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of greenhouse gases (GHGs). If a company exceeds its allocated allowances, it must
purchase additional allowances from the market or face penalties and fines for non-
compliance. When a company exceeds its emission allowances, it not only incurs finan-
cial penalties but also risks damaging its financial stability. The purchase of additional
allowances can significantly impact profitability and cash flow, as the cost of allowances
adds to operating expenses. Moreover, the need for costly remediation efforts or in-
vestments in emission reduction projects further strains financial resources, potentially
affecting credit risk (see, e.g., Ellerman and Joskow (2008), Stavins (2008), Schaefer
et al. (2010), Ellerman et al. (2016), Zheng et al. (2021)).

In the context of regulatory compliance, emissions exceedances can result in legal ram-
ifications and reputational damage, both of which have implications for credit risk. Reg-
ulatory agencies closely monitor companies’ compliance with their allocated allowances
and may impose stricter monitoring and reporting requirements on those with a history
of exceedances. This increased regulatory scrutiny heightens the risk of non-compliance,
negatively impacting a company’s solvency and creditworthiness Campiglio et al. (2018).

To illustrate the effects of emissions exceedances on financial health, several concrete
examples can be highlighted. One prominent case is the Volkswagen emissions scandal
in 2015. The company deliberately installed software in its diesel vehicles to manipulate
emissions tests, resulting in significantly excessive CO2 emissions. This misconduct led
to substantial fines, legal settlements, and severe reputational harm for Volkswagen,
thereby negatively affecting its solvency and market position (see, e.g., Jung and Sharon
(2019) and the references theirin for more details on the Volkswagen emissions scandal).

Roughly speaking, emissions exceedances pose a significant issue with far-reaching
implications for a company’s credit risk. The financial implications, regulatory risks, and
reputational consequences need to be carefully evaluated by companies to assess their
environmental performance, mitigate risks, and enhance long-term financial viability.

In this paper we propose to adapt a particular case of the Generalized Cox model
developed in Gueye and Jeanblanc (2022) to assess the impact of climate change on
credit risk. Specifically, we aim to estimate the sensitivity of default probability to
changes in macroeconomic factors, such as the excedances emissions CO2 given a fixed
threshold value defined by a potential regulatory compliance. Our approach falls within
the range of bottom-up approaches, which involve individually assessing each credit
or potential borrower to determine their level of risk. Traditionally, in the context of
studying climate change effect in credit risk, the structural model with the Merton model
has been widely used, as demonstrated in notable works such as Resilience et al. (2018);
Capasso et al. (2020); Bouchet and Le Guenedal (2020); Bourgey et al. (2022).

However, we distinguish ourselves from other articles by adopting a reduced-form
model. Unlike the structural model, which can be complex and require specific data on
the assets and liabilities of borrowers, the reduced-form model simplifies the analysis by
using more aggregated and easily accessible variables. This allows us to obtain results
more quickly and efficiently when assessing credit risk associated with climate change.

To our knowledge, the reduced-form approach has not been previously employed in
the evaluation of climate risk in credit risk. Our paper represents a pioneering effort in
this regard. By adopting a reduced-form model, we aim to explore a novel approach to
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assessing the impact of climate risk on credit risk.

By embarking on this research, we aim to contribute to the understanding of climate-
related credit risk and pave the way for further investigations into the application of
reduced-form models in this domain. Through our pioneering efforts, we hope to provide
valuable insights and stimulate future research in assessing climate risk in credit risk
using a reduced-form approach.

As mentioned earlier, our construction represents a specific model derived from the
generalized Cox model (see Gueye and Jeanblanc (2022)). This model aims to address a
limitation of the classical Cox model commonly used in the field of credit risk. In the tra-
ditional reduced-form approach, the modeling of defaults often excludes the occurrence
of events that coincide with stopping times of a reference filtration. This limitation ren-
ders these models unsuitable for accurately modeling certain financial products exposed
to default risk in the presence of external shocks . In such cases, there is a possibility that
the default time may be equal, with a strictly positive probability, to one of the shock
times that correspond to stopping times of the reference filtration. The generalized Cox
construction aims to overcome this issue by proposing a model that incorporates these
stopping times of the reference filtration, thereby enabling a more precise and realistic
modeling of default risk in these specific contexts.

In Gueye and Jeanblanc (2022), a comprehensive theoretical framework and concrete
examples were presented. This article, along with Chaieb and Gueye (2022), which
specifically explores CAT bonds, significantly enhances the potential applications of this
model in the domain of credit risk within the context of climate change.

The paper is structured as follows. In Section 2, we present our construction and
methodology, with a specific focus on how our model is developed within the context
of credit risk associated with COs emission exceedances. We provide a comprehensive
explanation of the methodology used to integrate COs emissions into our model and
analyze their impact on credit risk. In Section 3, we present the results of numerical
experiments conducted to assess the efficiency and effectiveness of the model. We dis-
cuss the findings from these experiments and provide a detailed analysis of the model’s
performance in relation to CO9 emissions and credit risk.

2 Methodology

2.1 Our model

We aim to model the default risk of a company that is exposed to high levels of COq
emissions which can have an impact on its credit risk. To achieve this, we adopt a
modeling approach that involves the COs emissions exceedance times of the company,
denoted by an increasing sequence of stopping times (6;);>1, where 7o = 0. These stop-
ping times represent the occurrence of jumps in a homogeneous Poisson process N with
an intensity of AV. Each of these exceedance times (6;)i > 1 corresponds to a quantity
of CO4 emissions exceedance, represented by a sequence of independent and identically
distributed (i.i.d) positive random variables (y;)i > 1 supposed to be independent to N.
It is important to note that these exceedances do not necessarily lead to the default of
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the company, but they increase the probability of default. To incorporate the effect of
these exceedances on the default probability, we introduce a shot noise process into the
company’s hazard process. This means that the hazard process of the company reacts
to a jump of size p(y;) at the time of the i-th emissions exceedance, where p is a positive
increasing function. Therefore, we define H as:

N
Hy:= A + Z p(y;)e =09, (2.1)
i=1
where A; := fot Asds represents the cumulative hazard process without taking into

account the climate change risk. Here, A is a positive process adapted to a filtration
FW generated by a standard Brownian motion W, which is independent of the Poisson
filtration FV. The parameter « is a positive constant that determines the decay rate of
the impact of each emissions exceedance.

By incorporating the shot noise process into the hazard process, we can capture the
increased risk of default associated with the CO9 emissions exceedances. The Poisson
process N analysis that accounts for the impact of CO2 emissions exceedances can be
interpreted as a process that models the random events associated with the company’s
CO; emissions. The intensity AV represents the average frequency of COy emissions
exceedances by the company, that is, the number of COs emissions exceedances per
unit time on average. This Poisson process N can be seen as a source of risk for the
company because it generates random events that can influence the company’s COq
emissions exceedances and hence its credit risk. For example, if AV is high, it means
that the company emits frequently large amounts of COs that exceed a fixed threshold
level, which can increase its credit risk due to the negative impact on the environment
and potential regulations. The weighting function p(y;)e**~=%) refers to the factor by
which each individual emission exceedance quantity, represented by y;, contributes to the
overall hazard process. The weight determines the importance or influence of a specific
emission exceedance event on the resulting credit risk measure. It is determined by the
combination of two components: p(y;) and e**=%) which can be interpreted as follows:

a) The component p(y;) captures how the emission exceedance value itself influences
the hazard process. The specific form of p will depend on the chosen function,
such as linear, quadratic, or another mathematical relationship. The purpose of
this component is to assign a weight to each emission exceedance quantity based
on its magnitude or other relevant factors. Throughout this paper, we suggest to
build this component on the following transformation based on commonly used
class of functions called power functions: p(y;) = y¥ where p > 0 that controls the
sensitivity of the weights to the emissions. By adjusting the value of p, we can
achieve different weighting characteristics:

— If p =1, p is linear. This means that the weights are directly proportional
to the emissions, reflecting a direct impact of emissions exceedances on credit
risk.
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— If 0 < p < 1, the relationship between exceedance quantities and credit
risk is weakened. The credit risk may be less sensitive to the magnitude of
exceedances.

— If p > 1, the impact of CO9 emissions exceedances on credit risk increases at
an accelerating rate. In other words, larger emissions exceedances have a dis-
proportionately greater effect on credit risk compared to smaller exceedances.
By means this amplifies the influence of large CO2 emissions exceedances on
credit risk. As a result, the credit risk increases more rapidly in response to
extreme events.

b) The component e®(=%) introduces a time decay factor into the weighting function.

It incorporates the time difference between the observation time ¢ and the emission
exceedance event time 6;. The term (¢t — 6;) represents the time elapsed since the
emission exceedance event occurred. The exponential function e®(*=%) determines
how the weight assigned to an emission exceedance event diminishes as more time
passes. The parameter a controls the rate at which the weight decreases over time.
A higher « leads to a faster decay of the weight, while a lower « results in a slower
decay.

By multiplying these two components together, the overall weight for each emission
exceedance event is obtained. The larger the weight, the greater the impact of the
corresponding emission exceedance on the credit risk measure.

Given the setup (2.1), we define the default time 7 of the company as

7:=inf{t >0: H > O} (2.2)

with © an exponential random variable with parameter 1 independent of F where F =
FW v FN. This definition of default time is known as the Generalized Cox approach as
studied in Gueye and Jeanblanc (2022).

2.2 Information flow representation

In this study, we suppose that the filtration F satisfies the usual conditions of naturalness
and completeness and we consider the filtered probability space (Q, F,P,F). We denote
by G the enlargement of F with respect to the default time 7, i.e, G = F; V o(7 < s),
for any t > 0.

Intuitively, this means that the filtration G contains all the information available in the
filtration I, as well as all the information related to the default time 7 that has been
revealed up to a certain time ¢t. In other words, the enlarged filtration G represents
the smallest filtration containing all the information available in F, as well as all the
information related to the default time that has been revealed up to a certain time t.
To study the conditional laws of 7, the chosen filtration must be rich enough to contain
all relevant information about the default time 7. In general, the filtration G is useful
for evaluating derivative products related to the default time 7 hence is used to study
the conditional laws of 7. Indeed, this filtration contains all available information in F
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as well as all information about the default time that has been revealed up to a certain
time ¢.

Note in this study that the default time 7 depends on macroeconomic factors such as
CO4 emissions, it may be necessary to choose the filtration F that contains information
about these factors. However, as the filtration F is included in the extended filtration G
with the default time 7, all the information available in FF is also present in G. Therefore,
studying the conditional laws of 7 in the filtration G is at least as accurate as doing so
in the filtration F. Therefore, here we choose the filtration G that is rich enough to
capture all relevant information for the analysis of the conditional laws of 7 even if we
always need the projections of some G-adapted processes onto [F that are very useful for
pricing.

2.3 Necessary quantities associated to the default time 7
In what follows we consider A to be the following CIR square root diffusion process
dhi = (0 — N)dt + oV \dWy, Ao =,

where 7,0, and o are positive parameters. Hence we have, for any 0 < ¢t < T, the
following known expression

Qt(T) — E [6_ ftT )\sd8|ftWi| — eAt(T)—Bt(T))\t (23)

1 _
where A and B verify (see, e.g., Maghsoodi (1996)) A:(T") = 23—2 In ( 2h 20T )

h—y+ehT=) (h+~)
_92 h(Tft)_l
and B(T) = h—w(;(T*t)(hly)’ where h = /72 + 202 .

We also assume that the random variables (p(y;)); have the common cumulative distribu-
tion function F' with density denoted by f,. Therefore by denoting p the random jump
measure of the marked point process (6;, p(yi))i>1, i-e., p(dt, dx) = 3 i~ 09, p(y,)) (dt, dz)
where ¢ is the Dirac delta function located at (0;, p(v;)), u admits the deterministic com-
pensator compensator measure v verifying v(dt, dz) = AN F(dz)dt. We denote by fi the
compensated random measure [ = y — V.

Lemma 2.1. The G-conditional survival probability of the firm is given, for any 0 <
t<T, by

o(T)Ly(T)

P(r > T|G) = H{T>t}Qt(T)Wa

(2.4)

where @Q is given in (2.3), for any 0 < T,

T
o(T) = exp ( /0 /R (e @ _1)u(ds, da))

and L(T) is the FN -martingale given by

Lu(T) = & /0 t /R (e P@e" ™ 1) 7i(ds, da))
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where £(X) denotes the Doléans-Dade exponential of the stochastic process X (i.e, for
X being a cadlag semimartingale then

g(X)t: eXt—%<X(C)7X(C)>t H (1+AXS)€_AXS,

0<s<t
where X (9 is the continuous martingale part of X .

PROOF: This can be proved by first using a consequence of the Key Lemma 1 (see,
e.g., Jeanblanc et al. (2009), Lemma 7.4.1.1), i.e

Zr|F
Blr > T1G1) = Lipogy ool

where Z is the Azéma surpermartingale given by Z; = e~ ¢, and then from the fact that
FW independent to FV, one has

Ele 7| F] = Ele~h 2| FV | Elem i pv)e " EN)

hence
P(r > T|G) = LpragBle )i | FV]S,(T)
= M50 Qi(T)S(T)
where
Efe~ D p)e” 0| 7]

Si(T) =
«7) o= S plyi)ea =00
and finally the result follows by applying Proposition 3.18 in Gueye and Jeanblanc (2022)
for computing S (7).
From Lemma 2.1, the default probability associated to 7 is given for any u > 0 by

P(r <u)=1-—Qo(u)c(u).

Due to the markovian property of the particular shot noise (see Schmidt (2017)
for more details about the markovian property of a shot noise process) used here,
the result (2.1) can be written in a very closed form. Indeed, for s < ¢t < T, one
has p(z)e*T=%) = p(x) AT=t)ga(t=5) hence by simple computations using L;(T) =
exp(— [ Ju p(2)e®T=9pu(ds, dx) — [ [o(e ?® e _ 1)u(ds, dx)), it is not difficult
to show the following equality

a(T—

v Vv (ds,dz) — (ea(T*t) — 1)Y}> ,
(2.5)

T
P(r > T|gt) = ﬂ{T>t}Qt(T) exp </ / (e*/)(w)e
t Rt

where Y is the shot noise part of H, i.e, Y; := vaztl p(y;)e®t=%)  for any t > 0.
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Therefore, by using the parameters about the CO2 emissions, we have

T
P(r > T|G;) = L~ Qu(T) exp <)\N /t /R +(e*ﬂ<x>e‘”*s) — 1)F(dp(z))ds — (>~ — 1)1@)

= oy Qu(T) exp (AN / ' (@) 1) ds — (2T — 1m) (2.6)

t

where ¢(u) is the Laplace transform of the distribution F evaluated at u € RT, i.e,
P(u) = [p+ e fox)(y)dy with f,x) the density function of p(X).

Hence, the default probability of 7 is given for any u > 0 by

P(r < u) =1 — Qo(u) exp ()\N /0 ’ (¢(ea<U*S>) - 1) ds> . (2.7)

Remark 2.2. Note that in some cases the Laplace transform may not exist in a closed
form, meaning that it cannot be expressed using a finite combination of elementary
functions. However it can still be calculated using numerical methods, such as numeri-
cal integration or series expansions.

3 Data and numerical analysis

The described model can be utilized in credit risk analysis by incorporating CO2 emis-
sions exceedances as an additional factor influencing the default risk of a company. In
this section, we demonstrate our construction by utilizing projected data on COs emis-
sions. We apply our methodology to analyze and model COy emissions based on the
provided projections. Our study focuses on integrating CO, emissions exceedances as
an additional factor impacting the default risk of a company. To simplify the analysis,
we assume the idiosyncratic component to be zero (i.e., A = 0). In a more practical
setting, this component can be calibrated using market CDS spreads. By calibrating the
model with more realistic data, we can consider the unique characteristics of different
entities and achieve a more accurate assessment of the default risk associated with CO9
emissions.

3.1 Data

The dataset consists of historical emissions data for the years 2017 to 2021, which were
collected from an anonymous company operating in the aviation industry sector. This
publicly traded corporation specializes in painting airplanes. These emissions data rep-
resent the total amount of CO2 emitted by the company in each respective year, catego-
rized into scopes 1, 2, and 3, and measured in metric kilotons (kt) of CO2. Recognizing
the limitations arising from insufficient data for our study, we propose the creation of hy-
pothetical projection scenarios as a means to enhance our dataset. By generating these
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projections, we aim to simulate potential future emissions and expand our dataset for a
more comprehensive analysis. To construct the dataset, we applied a degraded scenario,
assuming a gradual increase in emissions over time. By incorporating a random pat-
tern into the projections, we introduced variability and uncertainty into the simulated
emissions. This approach allows us to explore potential trends and outcomes for the
company’s emissions in the future. The projections were generated by multiplying the
average emissions of the previous years by a random factor between 1.0 and 1.2. This
range of variation accounts for different potential growth rates and ensures a diverse set
of scenarios within the optimistic framework. The projected emissions cover a period of
50 years, from the initial year of 2022 to the final year of 2071.

The resulting dataset (see Table 1) includes the projected year and the corresponding
emissions for each year. These projections, although hypothetical, provide valuable in-
sights into potential future emissions trends for the company. It’s important to note that
these projections are based on assumptions and random variation patterns and may not
accurately represent actual future emissions. Nonetheless, they serve as a valuable tool
for analysis, allowing us to explore different possibilities and assess the potential impact
of various emission scenarios.

Year COs Emissions
2017  1,013,101.00
2018 959,825.00
2019 1,123,000.00
2020 900,000.00
2021 827,000.00
2022 1,266,211.20
2023 1,052,472.50
2024 1,334,925.60
2025 987,567.80
2026 1,080,798.20
2027  1,143,772.80
2028 1,257,043.60

Table 1: Degraded projections of COg Emissions (in kt) for the company

3.2 Numerical analysis

This section presents our simulation approach for assessing credit risk resulting from
CO2 emissions exceedances using the shot noise model. To accurately capture the dy-
namics of credit risk, we employ a comprehensive framework that incorporates various
parameters and statistical techniques. First, we select a threshold based on the 95th
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percentile of the CO4 emissions data, specifically at 1,148,860 ts. This threshold repre-
sents a stringent limit, encompassing 95% of the emissions distribution while allowing
for a small fraction of outliers or higher emissions. By setting this threshold, we ensure
that our analysis focuses on the most significant exceedances.

To model the CO2 emissions exceedances, we utilize the generalized Pareto distribu-
tion (GPD) with estimated parameters. The shape parameter () is determined to be
0.01210418, and the scale parameter () is estimated as 3120.091 using the R package
POT Ribatet (2007). These parameters enable us to accurately capture the tail behavior
of the exceedances distribution. The frequency of exceedances is calculated by dividing
the number of exceedances by the total number of time periods. This provides an esti-
mate (AY) for the intensity parameter of a Poisson distribution fitted to the exceedances.
In our case, we find AV to be 0.003, reflecting the average frequency of COy emissions ex-
ceedances. For the simulation, we set the initial time period (¢9) to 0 and the simulation
horizon (T) to 50 years. We perform 1000 simulations, dividing the simulation horizon
equally among them to determine the timestep (dt). Setting the hazard process param-
eter (o) to 0.02, we account for the underlying hazard rate of credit risk. To simulate
the magnitude of the jumps in the shot noise process, we employ the GPD parameters
to generate the CO4y emissions exceedances. Additionally, we set the power parameter
(p), which governs the behavior of the shot noise process, to 0.1. These choices allow
us to accurately represent the characteristics of credit risk arising from CO2 emissions
exceedances.

Using the aforementioned parameters, our simulation generates the shot noise process
for the time interval from 7' to the simulation horizon. The output includes a time
vector and a data frame containing the simulated credit risk values. Through our simu-
lations, we have observed that the hazard process displays jumps precisely aligned with
the jumps in the Poisson process, indicating COs emissions exceedances. This finding
emphasizes the direct influence of these exceedances on credit risk. Remarkably, these
jumps in the hazard process significantly impact Azéma’s supermartingale, resulting in
corresponding negative jumps at the exact same moments. Figure 1 visually depicts
this phenomenon, offering a clear illustration of the interplay among COs emissions
exceedances, the hazard process, and the behavior of Azéma’s supermartingale.

Our simulation framework provides flexibility for scenario analysis and sensitivity
testing. By adjusting parameters such as the threshold (A"), hazard process parameter
(cv), shape parameter (), scale parameter (/) and power parameter (p), we can explore
various credit risk patterns and evaluate the effectiveness of risk management strategies.

3.2.1 Sensitivity of default probability to different parameter values

In the analysis, we focus on understanding how changes in the values of AV, «, the shape
(7), and scale (3) affect the default probability of a company. To conduct the analysis,
we set the following parameter values: p = 0.01, AN = 0.003, o = 0.02, 5 = 3120.091,
and v = 0.01210418. We also define a vector of maturities, including time periods of
5, 10, 15, and 20, which represent different time horizons for assessing default risk. By
systematically varying these parameter values, we calculate the default probabilities for
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Simulation of Credit Risk and Conditional Survival Probability due to CO2 Emission

0.5 Negative jump of Z (size = 0.3362348)

Value

0.0

=0.5 Jump'of H (size = 1.089946)

0 10 20 30 40 50
Time

colour — Hazard Process (H) — Azéma supermartingale (2 =e ™)

Figure 1: In blue, we observe a sample path of the hazard process given by Equation
(2.1). In red, we have the Azéma supermartingale denoted by Z = e~ 1. At
time t = 33, a significant positive jump of magnitude 1.089946 occurs in the
hazard process H. Consequently, we observe a corresponding negative jump of
magnitude 0.3362348 in the Azéma supermartingale Z at the same moment.

each maturity. This allows us to observe how changes in these parameters influence
the default risk over time. By iterating through the parameter values and updating
the specified parameter, we calculate the default probabilities for each maturity. This
allows us to observe how variations in these parameters impact the default risk over time.
The selected parameter values cover a broad range of possible settings. By considering
various combinations of parameter values within these ranges, we gain valuable insights
into the sensitivity of default probability to changes in these parameters. Results of this
analysis are showed in Figure 2. This figure consists of subfigures, each displaying a 2D
plot representing the default probability with respect to a specific parameter.

In Subfigure 2(a), we explore the sensitivity of default probability to changes in the
AN parameter. The plot displays the relationship between different AV values (ranging
from 0.0001 to 0.05) on the x-axis and maturities (5, 10, 15, and 20) on the y-axis. The
z-axis represents the sensitivity of default probability. The analysis reveals a consistent
pattern: as A\ increases, default probabilities also increase across all maturities. This
indicates that a higher default intensity corresponds to a greater likelihood of default.
The progressive increase in default probabilities demonstrates a positive relationship be-
tween A\ and default risk. Furthermore, the impact of AV on default probabilities varies
with the maturity of the financial instrument. For longer maturities, the effect of higher
AV values on default probability becomes more significant compared to shorter matu-
rities. This implies that changes in the default intensity have a stronger influence on
long-term default risk. In other words, variations in AN have a more pronounced impact
on default probability for extended time horizons. These findings underscore the criti-
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Figure 2: Default Probability Sensitivity Analysis: Impact of Parameters on Default
Risk



A Reduced Form Appraoch for Modeling Credit Risk Sensitivity to Excessive... 153

cal importance of accurately estimating and monitoring the default intensity parameter
(AN) when evaluating default risk. Higher A" values indicate an increased probability
of default, particularly for longer maturities. Therefore, comprehending the sensitivity
of default probability to changes in AV is essential for effective risk management and
informed decision-making in financial contexts.

Subfigure 2(b) showcases the sensitivity of default probability with respect to the pa-
rameter . The x-axis represents the values of a, ranging from 0.005 to 2, while the
y-axis represents the maturities. The z-axis indicates the sensitivity of default proba-
bility. This plot allows us to analyze the impact of different the values of a on default
probability over the specified maturities. For values of « close to zero, corresponding
to longer maturities, we observe a rapid increase in default probabilities. This indicates
that the impact of extreme events with very low values becomes more significant for
longer time horizons when « is near zero. As « increases from zero, the default prob-
abilities continue to rise, but at a slower pace. This suggests that extreme events still
have an influence on default probabilities, but the effect becomes less pronounced as «
deviates from zero. The rate of increase in default probabilities for « values greater than
zero varies across maturities. While there is a general upward trend, the magnitude of
the increase is more prominent for longer maturities. Notably, for very small values of
«, the increase in default probabilities is particularly significant, indicating a higher vul-
nerability to extreme events and default risk for companies operating in such conditions.
As « approaches higher values, the rate of increase in default probabilities diminishes,
implying that extreme events have a lesser impact on default probabilities compared to
lower values of a.

Subfigure 2(c) provides insights into the sensitivity of default probability to changes
in the shape parameter, specifically for a maturity of 10 years. The x-axis represents
the shape values, ranging from -1 to 3.5, while the y-axis represents the scale parameter,
ranging from 2000 to 10000. The z-axis indicates the sensitivity of default probability.
The analysis reveals that the shape parameter has a moderate impact on default proba-
bilities. As the shape parameter increases, default probabilities also increase, indicating
a higher level of default risk. Conversely, as the shape parameter decreases, default prob-
abilities decrease, suggesting a lower default risk. In contrast, the scale parameter exerts
a more pronounced influence on default probabilities. Larger values of the scale param-
eter lead to higher default probabilities, signifying an elevated default risk. Conversely,
smaller values of the scale parameter result in lower default probabilities, indicating a
reduced default risk. To summarize, both the shape and scale parameters play a role in
determining default probabilities. However, the scale parameter has a more significant
effect on the magnitude of default probabilities compared to the shape parameter.

3.2.2 Stress Testing Analysis Report for COs; Emission Management

In our study on COs emission management, we conducted a stress testing analysis to
assess the risks associated with exceeding emission thresholds. The primary objective
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was to determine the value of lambda that corresponds to a target default probability
for a specific emission threshold. This approach enables us to quantitatively evaluate
the risk and implement appropriate measures to mitigate emissions. To perform the
analysis, we made the following assumptions:

e The maturity period was fixed at 10 years.
e The parameter p of rho was set to p=0.01.
e We utilized a simplified model with o = 0 to simplify the estimation process.

For the target default probability, we selected values ranging from 0.3% to 5% with a
step size of 0.005%. This range covers a wide spectrum of risk levels and allows for a
comprehensive assessment of the system’s resilience. Regarding the emission thresholds,
we set them at the following values: 975597.9, 1071825.1, 1134181.4, and 1151342.9.
These thresholds represent critical points at which the risk of exceeding emissions is
expected to be significant. To determine the value of AV corresponding to the target
default probability for each threshold, we iterated over different values of AV until the
calculated default probabilities matched the target default probabilities. For each value
of AN, we calculated the probability corresponding to exceeding the emission threshold.
By gradually adjusting the value of AV, we eventually found the value that corresponded
to the target default probability for the fixed threshold. Based on the analysis, we
obtained value of AVs corresponding to the target default probabilities and thresholds.
However, we have only included a selection of snapped values in Table 2. This table
provides an overview of the values of AV obtained for different combinations of default
probabilities and thresholds, offering insights into the risk levels associated with specific
emission thresholds. Furthermore the results can be seen in Figure 3 consisting in a 2
D plot of the stressed values of AV with respect to the fixed thresholds and the target
values. For example, when the target probability is set to 5% and the emission threshold
is fixed at 1151342.9 units, we obtained a value of AN of 0.007826996. This value of AV
can be interpreted as a measure of the risk level associated with the company’s COq
emissions. A higher value of AV indicates a higher frequency of exceeding the emission
threshold. In this case, a value of AV of 0.007826996 suggests that the company faces a
relatively high risk of exceeding the 1151342.9-unit emission threshold.

Fixed Threshold Target Default Probability AN

stress

975597.9 0.03343333 0.005063629
1071825.1 0.03895556 0.005941772
1134181.4 0.04447778 0.006858826
1151342.9 0.05000000 0.007826996

Table 2: Stressed values of AV for Different Target Default Probabilities at maturity 10
years
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Figure 3: Stressed values of AV for Different Target Default Probabilities at maturity 10
years.

4 Conclusion

This paper represents a significant contribution to the literature on assessing the impact
of climate change, particularly COs emission exceedances, on credit risk for companies.
By employing a reduced-form model derived from the Generalized Cox model developed
in Gueye and Jeanblanc (2022), we were able to depart from more complex structural
approaches and focus on aggregated and easily accessible variables. The conducted nu-
merical experiments validated the efficiency and effectiveness of the model, enhancing
our understanding of the sensitivity of default probability to changes in macroeconomic
factors related to COg emission exceedances. In this step, we explored some simulated
scenarios of data from an aviation firm.

However, this pioneering work also raises exciting new questions and perspectives, in-
cluding the distribution of emitted COq excess quantities (y;);, the form of the impact
function p on the risk process, and the intensity A" of the Poisson process. Future im-
provements could involve exploring these aspects in greater depth and gaining a better
grasp of the underlying mechanisms.

A more in-depth analysis of historical emissions data and the relationships between
emissions exceedances and companies’ financial performance would further enrich the
model. Additionally, incorporating other factors related to climate change, such as the
transition to renewable energy sources, would provide a more comprehensive view of the
climate’s impact on credit risk.

Improving this model could also involve considering the potential interactions between
climate-related risks and other financial risks, as well as exploring the implications of
different regulatory frameworks on credit risk. Furthermore, validating the model with
real-world data from multiple companies and sectors would enhance its robustness and
applicability.
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